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This paper reports the growth and spectroscopic properties of Pr
3+

:Sr3La2(BO3)4 crystal. A transparent Pr
3+

:Sr3La2(BO3)4 
crystal with large size has been successfully grown by the Czochralski method. The spectral parameters of 
Pr

3+
:Sr3La2(BO3)4 crystals have been calculated and analyzed based on the Judd-Ofelt theory. The emission cross-sections, 

fluorescence lifetime and the fluorescence quantum efficiency of the 
1
D2 multiplets were estimated. The investigated result 

regarded Pr
3+

:Sr3La2(BO3)4 crystal as a potential medium for solid-state laser. 
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1. Introduction 
 

Trivalent praseodymium ion (Pr
3+

) has rich emission 

spectral lines from the ultraviolet to near infrared regions. 

Previously the spectroscopic and laser properties of variety 

of Pr
3+

 ions doped materials have been investigated, such 

as YAlO3, LiYF4 [1, 2]. The Pr
3+

 lasers have a variety of 

applications, such as the environmental sensing, optical 

storage technology, underwater communications, 

photodynamic therapy [3, 4]. Borate crystals were 

attracted much attention as functional materials in laser, 

nonlinear optics, piezoelectricity and scintillation 

engineering [5, 6]. The Sr3La2(BO3)4 crystal belongs to the 

orthorhombic system with space group Pc21n
 
[7]. The Er

3+
 

and Yb
3+

-doped Sr3La2(BO3)4 crystals were regarded as  

potential laser materials owing to its excellent chemical, 

physical and optical properties [8, 9]. In order to explore 

the more efficient Pr
3+

-doped crystal material, this paper 

reports on the crystal growth and spectroscopic properties 

of Pr
3+

: Sr3La2(BO3)4 crystal. 

 

 

2. Experiment 
 

Since Sr3La2(BO3)4 crystal melts congruently at about 

1337C, it can be grown by the Czochralski method. The 

raw materials were synthesized by the solid-state reaction 

method. The chemicals used were Sr2CO3, La2O3, Pr2O3 

and H3BO3 with 99.99% purity. The raw materials were 

weighed accurately according to the stoichiometric ratio of 

Sr3La1.988Pr0.012(BO3)3. A 3wt% excess amount of H3BO3 

was added to compensate the loss of B2O3 volatilization in 

the process of the solid-state and growth. The weighed raw 

materials were ground and extruded to form pieces. Then 

pieces were placed in a platinum crucible and held to 

1050℃ for 24 h. The process was repeated once again to 

assure adequate solid-state reaction. Then synthesized raw 

materials were melted in a  4540 mm
3
 iridium crucible. 

The crystal was grown in a 25 KHz frequency furnace in a 

N2 atmosphere. The crystal was grown at a pulling rate of 

0.6 mm h
-1

, and a rotating rate of 15 rev min
-1

. When 

growth ended, the crystal was pulled out of the melt and 

cooled down to room temperature at a cooling rate of 

30 ℃ h
-1

.  

A high optical quality sample with dimensions of 

1061.32 mm
3 

cut from the as-grown crystal was used 

for the spectral measurements. The absorption spectrum 

was measured at room temperature using a Perkin Elmer 

UV–vis–NIR Spectrometer (Lambda-900) in a range from 

200 to 2300 nm wavelength. The fluorescence spectrum 

was measured using an Edinburgh spectrophotometer 

(FLS920) at room temperature. The fluorescence lifetime 

was measured by Lifespec-ps system of Edinburgh 

Instruments Ltd. The light source is continuous tunable 

picosecond pulsed Ti: sapphire (Tsunami+GWU). In 

experiment of lifetime measurement, the pulse duration of 

the incident light is 2~100 ps, the time resolution of the 

MCP-PMT detector is about 50 ps, the resolution of the 

monochromater is 0.5~2 nm, and the signal-to-noise ratio 

of Lifespec-ps system is 6000:1.  

 

 

3. Results and discussions 
 
3.1 Crystal growth 

 

A Pr
3+

:Sr3La2(BO3)4 crystal with dimensions of 

25×30 mm
3 

was successfully grown by the Czochralski 
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method. The grown crystal is transparent and free crack, as 

shown in Fig. 1. The concentration of Pr
3+ 

ions in the 

grown crystal was measured to be 0.364×10
20 

ions cm
-3

 

(0.49 at.%) by ICP atomic emission spectroscopy. 

 

 

 
 

Fig.  1. Pr3+:Sr3La2(BO3)4 single crystal grown by the 

Czochralski method. 

 

 

3.2 Absorption spectroscopy and Judd-Ofelt 

     analysis 

 

Fig. 2 shows the absorption spectrum of 

Pr
3+

:Sr3La2(BO3)4 crystal at the room temperature. These 

sharp absorption lines were assigned to transitions from 

the 
3
H4 ground state manifold to the excited manifolds of 

Pr
3
+ ions. The strongest Pr

3+
 absorption band was centered 

at 449 nm and 1529 nm, corresponding to the 
3
H4→

3
P0, 

3
P1, 

1
I6 and 

3
P2 and 

3
H4→

3
F3+

3
F4 transition, respectively. The 

absorption band at 449 nm has a full widths at half 

maximum (FWHM) of 15 nm and its absorption cross-

section abs was be estimated to be 1.76×10
-20 

cm
2
, which 

can be effectively pumped by visible diode laser sources. 
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Fig. 2. Absorption spectrum of Pr3+:Sr3La2(BO3)4 crystal  

at room temperature. 

 

 

 The standard and modified Judd–Ofelt (J-O) theories 

are widely used to analyze the spectroscopic properties of 

4 f transitions of Pr
3+

 ions in various hosts [10-12]. The 

oscillator strength parameter, radiative transition rates, 

radiative lifetime and fluorescence branch ratio were 

calculated based on the absorption spectrum. The 

calculating procedures follow those described elsewhere 

[12], the results are listed in Table 1. The radiative 

lifetimes of the 
3
P0 and

 1
D2 multiplets are calculated to be 

10.14 and 126.89 s, respectively. 

 

 

 
Tabel 1. The oscillator strength parameters t, radiative transition rates, fluorescence branching ratios and radiative 

lifetimes of  Pr3+: Sr3La2(BO3)4 crystal determined by the modified J-O theory. 

 

Excited  levels Terminal levels Wavelength (nm) A(s-1) β(%) f μs
3P0 

1D2 2564 20.19 0.02 10.14 

 1G4 926 2.055103 2.084  

 3F4 722 1.137104 11.53  

 3F3 697 0 0  

 3F2 637 2.124104 21.547  

 3H6 610 2.113104 21.437  

 3H5
 538 0 0  

 3H4
 484 4.277104 43.381  

1D2 
1G4 1439 1.002103 12.714 126.89 

 3F4 1000 1.988103 25.223  

 3F3 957 197.145 2.501  

 3F2
 844 869.181 11.029  

 3H6
 797 867.745 11.01  

 3H5
 678 45.817 0.581  

 3H4
 595 2.911103 36.941  

Stard. Ω2=-2.57, Ω4=9.61, Ω6=7.04; Rmserror=6.3% 

Modif. Ω2=4.73, Ω4=8.46, Ω6=16.83; Rmserror=1.7% 
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3.3 Fluorescence spectra and lifetime 

 

Fig. 3 illustrates the emission spectrum of 

Pr
3+

:Sr3La2(BO3)4 crystal at the room temperature. In the 

visible region there are two intensive fluorescence bands. 

The emission bands centered at 551 nm is due to  
3P0 →

3
H5 transition, the emission bands centered at 606 nm is 

the overlap of corresponding to 
3
P0→

3
H6   and 

1
D2→

3
H4 

transitions. Due to the narrow energy gap between the 
3
P0 

and 
1
D2 multiplets (about 3600 cm

-1
), the rate of 

multiphonon relaxation from 
3
P0 to the next lower 

1
D2 

multiplet is quite high. Therefore, the fluorescence 

branching ratios for the 
3
P0→

1
D2 transition is also small 

(about 0.02%) as showed in Table 1. In the NIR region, 

there are two main emission bands located around 878 and 

1038 nm, corresponding to the 
1
D2 →

3
H6+

3
F2 and 

1
D2→

3
F3+

3
F4 transitions, some weak emissions related to 

other transitions are marked in Fig. 3.  
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   Fig. 3. Emission spectra of Pr3+: Sr3La2(BO3)4 crystal 

 excited 449 nm radiation at room temperature. 

 

 

The 
1
D2 →

3
F3+

3
F4 transition excited at 594 nm was 

selected to investigate the decay properties of the 
1
D2 

multiplet. The 
1
D2 decay curve follows a single-

exponential behavior. The fluorescence lifetime  f and 

quantum efficiency  of the 
1D2 manifold can be derived 

as 34.9 μs and 27.5% respectively, which are higher than 

those of other borate crystals, such as 21.7μs and 7.8% of 

Pr
3+

:LaB3O6 crystal [12], 27 μs and 14% of 

Pr
3+

:Ca4GdO(BO3)3
 
crystal [13]. The 

3
P0 →

3
H4 transitions 

was selected to investigate the fluorescence lifetime of the 
3
P0 multiplet excited at 449 nm, but no fluorescence decay 

curve of the 
3
P0 multiplet was obtained. It is a reason that 

the fluorescence lifetime of the 
3
P0 multiplet is too short to 

determine for our used instrument. 

 

 

3.4 Stimulated emission cross-sections 

 

According to the fluorescence spectrum, the 

stimulated emission cross-sections at various wavelengths 

can be estimated by the Füchtbauer-Ladenburg (F–L) 

formula [14] 
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             (1) 

where I() is the fluorescence intensity at wavelength , 

A(J→J’) is the spontaneous emission probability for a 

transition from an excited manifold J to a lower manifold 

J’, c and n are the velocity of light and refractive index of 

the crystal respectively. On the basis of the fluorescence 

spectrum and Eq. (1), the emission cross-sections of 

transitions from the 
1
D2 manifold were calculated. During 

the calculation of emission cross-section of the 
1
D2→

3
H4 

transition, the contribution of emission from the 
3
P0→

3
H6 

transition around 606 nm was neglected because of the 

weak fluorescence intensity compared with that of the 
1
D2→

3
H4 transition. Thus the emission cross-section at 606 

nm was calculated to be 0.74×10
-20

 cm
2
, which is 

comparable to 0.54×10
−20

 cm
2
 of Pr

3+
:Sr5(PO4)3F crystal 

that has been demonstrated to be a promising laser channel 

[3]. Moreover, the emission cross-section at 1038 nm was 

also estimated to be 1.93×10
-20

 cm
2
, which is comparable 

to 2.3×10
−20

 cm
2
 of Pr

3+
:NaBi(MO4)2 crystal [15].  

The values of the product of the emission cross-

section em and fluorescence lifetime τf for the 
1
D2 →

3
H4 

transition, emτf, which is an important parameter in 

characterizing the laser threshold and efficiency [16], is 

2.7610
-19

 cm
2
μs, which is comparable to those of oxide 

crystals, such as the estimated 1.1510
-19

 cm
2
μs of 

Pr
3+

:La2(WO4)3 crystal [17], 2.6210
-19 

cm
2
μs of 

Pr
3+

:LaB3O6 of crystals which has been demonstrated the 
1
D2 manifold to be a promising luminescent and upper 

laser level [12]. In addition, for the 
1
D2→

3
F3+

3
F4 

transition at about 1038 nm which can be applied to 

underwater communications, the value of emτf is   

6.7410
-19

 cm
2
μs.  

 

 

4. Conclusions 
 

A Pr
3+

:Sr3La2(BO3)4 crystal with dimensions of 

2530 mm
3
 has been successfully grown by the 

Czochralski method.. The absorption, fluorescence spectra 

and fluorescence lifetime of Pr
3+

 in Pr
3+

:Sr3La2(BO3)4 

crystal were investigated at room temperature. The 

absorption spectra is analyzed by the standard J–O theory 

and the modified J–O theory without the 
3H4 →

3P2 

transition. Compared with the standard J–O theory, the 

reliability of the J-O parameters obtained by the modified 

J-O theory for Pr
3+

 ions has been improved. The crystal 

exhibited strong absorption band at 449 nm, which can be 

pumped with diode laser. The fluorescence lifetime and 

fluorescence quantum efficiency of the 
1
D2 multiplets were 

estimated to be 34.9 μs and 27.5%, respectively. In 

comparison with the other Pr
3+

-doped crystals, 

Pr
3+

:Sr3La2(BO3)4 crystal has large emission cross-sections 

at 606 nm and 1038 nm, respectively. Except above, 

Pr
3+

:Sr3La2(BO3)4 crystal has a large value of emτf which 

is 2.7610
-19

 cm
2 
μs. To sum up, these results suggest that 
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Pr
3+

:Sr3La2(BO3)4 crystal may be regarded as  a potential 

candidate material for solid-state laser. 
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